
LECTURE 3

YIHANG ZHU

The Main reference is [Neu99] ��3,8,9.

1. Number fields

Let R be a Dedekind domain with fraction �eld K. Using unique factorization,
we see that the set of nonzero ideals of R form a semi-group under multiplication
which is isomorphic to

⊕
p Z≥0. We can produce a group

⊕
p Z out of it by formally

introducing the negative powers of a prime ideal. This can be done in a more
concrete way, with the concept of a fractional ideal.

De�nition 1.1. A fractional ideal is a nonzero �nite R-submodule of K. Equiva-
lently, it is a nonzero R-submodule I of K such that ∃a ∈ R− {0} , aI ⊂ R.

De�nition 1.2. Let I be a fractional ideal. De�ne I−1 := {a ∈ K|aI ⊂ R}.

We de�ne the product of two fractional ideals in the same way as ideals.

Proposition 1.3. Every fractional ideal is uniquely factorized as I =
∏g
i=1 p

ei
i ,

where pi are prime ideals and ei ∈ Z. The set of fractional ideals form a group
under multiplication, where the identity element is R and the inverse of I is I−1

de�ned as before. This group is free abelian on the set of prime ideals.

Now let K be a number �eld. Any element a ∈ K× gives rise to a fractional
ideal aOK , called a principal fractional ideal. Let IK be the group of fractional
ideals. De�ne the class group to be Cl(K) = Cl(OK) := IK/K

×. We have an exact
sequence of abelian groups

1→ O×K → K× → IK → Cl(K)→ 1.

We see the di�erence between elements and fractional ideals of K are measured by
the groups O×K and Cl(K). Among the main achievements of 19th century algebraic
number theory is the determination of the structure of these two groups.

Theorem 1.4. Cl(K) is a �nite group.

The proof uses geometry of numbers. The same technique yields to prove:

Theorem 1.5. Let r1 be the number of real embeddings of K, and r2 be the number
of pairs of conjugate complex embeddings of K, so that [K : Q] = r1 + 2r2. The
group O×K is a �nitely generated abelian group isomorphic to Zr1+r2−1 ⊕ T , where
T is the �nite cyclic group consisting of the roots of unity in K.

For proofs of these two theorems see ��4,5,6,7 of [Neu99]. The proofs are ex-
tremely beautiful.

Example 1.6. O×K is �nite if and only if K = Q or is an imaginary quadratic �eld.
Let K be an imaginary quadratic �eld, then the group of roots of unity in K is
{±1} unless K = Q(

√
−1),Q(

√
−3). When K is a real quadratic �eld, the group
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O×K/ {±1} ∼= Z. A generator is called a fundamental unit, which is closely related
to the study of Pell equations.

The class group Cl(K) governs the arithmetic complexity of K, and also has an
amazing link to zeta values. We call the order of Cl(K) the class number of K,
denoted by hK .

Proposition 1.7. Let K be a number �eld. TFAE.

(1) OK is a PID.
(2) OK is a UFD.
(3) hK = 1.

Example 1.8. Baker and Stark proved in 1967 that there are only nine imaginary
quadratic �elds with class number 1, which are Q(

√
−n) with n = 1, 2, 3, 7, 11, 19,

43, 67, 163. It is conjectured by Gauss that there are in�nitely many real quadratic
�elds with class number 1. The conjecture is still open today.

Example 1.9. Let K be a number �eld. There is a way to associate a function to K,
called the Dedekind zeta function ζK . When K = Q it is Riemann's zeta function.
There is a deep result called the class number formula, relating various arithmetic
invariants of K to the special values of ζK . In particular, by the class number
formula the fact that Q(i) has class number one is equivalent to the following
identity:

1− 1

3
+

1

5
− 1

7
+ · · · = π

4
.

The class number formula also yields the following way to compute hK for an
imaginary quadratic �eld K = Q(

√
n), n < 0 square free. Let wK be the number of

roots of unity in K. (4 for Q(i), 6 for Q(
√
−3), 2 otherwise.) Let N = |dK |. Then

hK = −wK
2N

N∑
a=1

aχ(a),

where χ : (Z/NZ)× → {±1} is a character characterized by χ(p) = (np ) for odd

primes p 6 |n.

Exercise 1.10. Compute the class numbers of Q(
√
−5),Q(

√
−6),Q(

√
−10).

2. Prime factorization

Let L/K be a �nite extension of number �elds. For p a prime ideal of OK ,
it generates an ideal pOL of OL. The fundamental question in algebraic number
theory is to determine how pOL factorizes into prime ideals of OL. Write

pOL =

g∏
i=1

Pei
i ,

where Pi's are distinct prime ideals of OL. We say these Pi's lie above or divides
p. Note that every prime ideal P of OL divides a unique prime ideal of OK ,
namely OK ∩P. We call ei =: e(Pi, p) the rami�cation index. The �elds OL/Pi ⊃
OK/p are �nite �elds, called the residue �elds, usually denoted by κ(Pi) and κ(p).
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De�ne fi = f(Pi, p) := [OL/Pi : OK/p], called the inertia degree. We have the
fundamental identity relating these numbers.

g∑
i=1

eifi = [L : K].

De�nition 2.1. We say Pi is unrami�ed over p if ei = 1. We say p is unrami�ed
in L if ei = 1, 1 ≤ i ≤ g. We say p is inert if pOL is a prime ideal of OL,
i.e. if g = 1, e1 = 1. We say p is split in L if g = [L : K], or equivalently,
ei = f1 = 1, 1 ≤ i ≤ g.

One should think of rami�cation as an exceptional case. In fact only �nitely
many primes of K are rami�ed in L. For K = Q, the primes that are rami�ed in L
are exactly the factors of dL. In general the rami�ed primes are determined using
the di�erent and the relative discriminant. We introduce a useful way of computing
prime factorization.

Write L = K(θ) with θ ∈ OL, which can always be arranged. Consider the ring
OK [θ]. It is a subring of OL and its fraction �eld is K. Such subrings of OL are
called orders. De�ne the conductor of OK [θ] to be

F = {a ∈ OL|aOL ⊂ OK [θ]} .

It is the largest ideal of OL that is contained in OK [θ]. When OK [θ] = OL,
which can luckily happen in many cases, we have F = OL. We can determine the
factorization of any prime ideals of OK that is prime to F.

Proposition 2.2. Let p be a prime of K that is prime to F. (i.e. pOL is prime to
F.) Let κ = OK/p. Let f(X) ∈ OK [X] be the monic minimal polynomial of θ over
K. Over κ, factorize f(X) into irreducible polynomials:

f(X) =

g∏
i=1

fi(X)ei ∈ κ[X],

where fi(X) are irreducible polynomials in κ[X]. Then the factorization of p is given
by:

pOL =

g∏
i=1

Pei
i ,

where Pi = pOL+fi(θ)OL. Moreover, the inertia degree of Pi is equal to the degree
of fi(X).

Corollary 2.3. If p is a prime of K that is prime to F and the discriminant of
f(X), then p is unrami�ed in L. In particular, this holds for all but �nitely many
primes.

Example 2.4. Let K be a quadratic �eld with discriminant d. Recall d ≡ 0, 1

mod 4. Then OK = Z[θ] with θ = d+
√
d

2 . So we can apply the above proposition
to determine the factorization of all the primes of Z in K. Let p be an odd prime.
We have

(1) p is rami�ed in K if and only if p|d. We have (p) = (p,
√
d/4)2 when 4|d,

and (p) = (p, θ)2 when 4 6 |d.



4 YIHANG ZHU

(2) Let p be prime to d and suppose (dp ) = 1. Then p is split. If 4|d, we have

(p) = (p,
√
d/4− a)(p,

√
d/4 + a) where a ∈ Z is any solution to a2 ≡ d/4

mod p. If 4 6 |d, we have (p) = (p, θ−(d+a)b)(p, θ−(d−a)b), where a, b ∈ Z
are any solutions to a2 ≡ d, 2b ≡ 1 mod p.

(3) If p is prime to d and (dp ) = −1, then p is inert in K.

Moreover, 2 is rami�ed in K if and only if 4|d, in which case (2) = (2,
√
d/4−d/4)2.

Suppose 4 6 |d. When d−1
4 is odd, 2 is inert. When d−1

4 is even, (2) = (2, θ)(2, θ+1)
is split.

Exercise 2.5. Work out the details.

Example 2.6. Recall OQ(ζp) = Z[ζp]. Assuming this, we have (p) = (ζp − 1)p−1.

3. Basic ramification theory

In this section L/K is a �nite Galois extension of number �elds of degree n. The
Galois group Gal(L/K) acts on various invariants of L, for instance the group of
fractional ideals IL and the class group Cl(L). If P is a prime of L above p of K,
then any element of Gal(L/K) sends P to another prime above p. We have

Proposition 3.1. Let L/K be a �nite Galois extension of number �elds. Then for
any prime p of K, the Galois group Gal(L/K) acts transitively on the set {Pi}1≤i≤g
of primes of L above p. In particular, the inertia degrees fi are the same, denoted
by f = f(p, L/K), and by unique factorization, the rami�cation degrees ei are the
same, denoted by e = e(p, L/K). The fundamental identity reduces to

efg = n.

Let P be a prime of L above a prime p of K. Let e, f, g be as above.

De�nition 3.2. The stabilizer of P in Gal(L/K) is called the decomposition group

of B, denoted by D(P). The corresponding sub�eld LD(P) of L is called the
decomposition �eld, denoted by ZP.

Remark 3.3. For σ ∈ Gal(L/K), D(σP) = σD(P)σ−1 and ZσP = σ(ZP).

The group P is the stabilizer in a group of order n on an orbit of cardinality g,
so its order is n/g = ef . Let PZ be the prime of ZP lying under P. The Galois
group of L/ZP is D(P), and it should act transitively on the primes of L above
PZ . This shows that P is the only prime of L above PZ .
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